

Miklós Maróti and Ralph McKenzie Vanderbilt University

July 30, 2004

1

Problem

All algebras are assumed to be of finite signature.

Definition. A class \mathcal{K} of algebras is *finitely axiomatizable* if there exists a first-order sentence ϕ such that $\mathcal{K} = \text{Mod}(\phi)$. For varieties (or quasivarieties) this condition is equivalent to having a *finite basis of equations* (or *quasiequations*, respectively).

Problem. Which varieties (or quasivarieties) are finitely axiomatizable?

Problem. Under what conditions can one decide of a finite algebra if it generates a finitely axiomatizable variety (or quasivariety)?

CLASSICAL RESULTS

Theorem (R. Lyndon, 1951). Every variety generated by a two-element algebra is finitely axiomatizable,

Theorem (S. Oates, M. B. Powell, 1964). Every finitely generated variety of groups is finitely axiomatizable.

Theorem (P. Perkins, 1969). Every finitely generated variety of commutative semigroups is finitely axiomatizable.

Theorem (J. A. Gerhard, 1970). Every finitely generated variety of idempotent semigroups is finitely axiomatizable.

Theorem (R. L. Kruse, I. V. L'vov, 1973). Every finitely generated variety of associative rings is finitely axiomatizable.

Nonfinitely Axiomatizable Examples

Examples of nonfinitely axiomatizable varieties generated by:
Example (R. Lyndon, 1951). a 7-element algebra.
Example (V. V. Visin, 1963). a 4-element groupoid.
Example (V. L. Murskiĭ, 1965). a 3-element groupoid.
Example (P. Perkins, 1969). a 6-element semigroup.
Example (S. V. Polin, 1976). a finite non-associative ring.
Example (R. Bryant, 1982). a finite pointed group.

Examples of nonfinitely axiomatizable quasivarieties generated by:
Example (V. P. Belkin, 1978). a 10-element lattice.
Example (J. Lawrence, R. Willard, 1998). an 18-element semigroup with an additional unary operation (inherently nonfinitely based for quasi-equations).

UNIVERSAL ALGEBRAIC RESULTS FOR VARIETIES

Theorem (K. Baker, 1977). Every finitely generated congruence-distributive variety is finitely axiomatizable.

Theorem (R. McKenzie, 1987). Every finitely generated modular variety with a cardinal bound on the size of its subdirectly irreducible members is finitely axiomatizable.

Definition. A lattice is *meet semi-distributive* if it satisfies

$$x \wedge y = x \wedge z \to x \wedge y = x \wedge (y \vee z).$$

Theorem (R. Willard, 2000). Every congruence meet semidistributive variety with a finite bound on the size of its subdirectly irreducible members is finitely axiomatizable.

Conjecture (R. E. Park, 1976). Every finitely generated variety with a finite bound on the size of its subdirectly irreducible members is finitely axiomatizable.

UNIVERSAL ALGEBRAIC RESULTS FOR QUASIVARIETIES

Definition. For a quasivariety \mathcal{K} and algebra $\mathbf{A} \in \mathcal{K}$ the relative congruence lattice of \mathbf{A} with respect to \mathcal{K} , denoted by $\operatorname{Con}_{\mathcal{K}} \mathbf{A}$, is the lattice-ordered set of congruences $\alpha \in \operatorname{Con} \mathbf{A}$ with $\mathbf{A}/\alpha \in \mathcal{K}$. **Theorem** (D. Pigozzi, 1988). Every finitely generated relatively congruence distributive quasivariety is finitely axiomatizable. **Conjecture** (D. Pigozzi). Every finitely generated relatively modular quasivariety is finitely axiomatizable.

Theorem (M.M., R. McKenzie, 2003). Let \mathcal{K} be a finite set of finite algebras such that $SP(\mathcal{K})$ has pseudo-complemented congruence lattices. If $HS(\mathcal{K}) \subseteq SP(\mathcal{K})$ then $SP(\mathcal{K})$ is finitely axiomatizable.

PSEUDO-COMPLEMENTED CONGRUENCE LATTICES

Definition. A lattice is *pseudo-complemented* if for every element a there exists a largest element b such that $a \wedge b = 0$. A quasivariety has *pseudo-complemented congruence lattices* if the congruence lattices of its members are pseudo-complemented.

Definition. A set of Willard terms for a quasivariety \mathcal{K} is a finite sequence $\{(f_i, g_i) : i < n\}$ of pairs of ternary terms such that the equations $f_i(x, y, x) \approx g_i(x, y, x)$ (i < n) hold in \mathcal{K} and so does

$$x \neq y \to \bigvee_{i < n} \Big(f_i(x, x, y) = g_i(x, x, y) \leftrightarrow f_i(x, y, y) \neq g_i(x, y, y) \Big).$$

Theorem. For every quasivariety

$$CD \Rightarrow SD(\wedge) \Rightarrow PCC \Leftrightarrow W.$$

Proof. (PCC) \Leftarrow (W): We will show that for all $\alpha, \beta, \gamma \in \text{Con } \mathbf{A}$ $\alpha \wedge \beta = \alpha \wedge \gamma = 0_{\mathbf{A}} \rightarrow \alpha \wedge (\beta \vee \gamma) = 0_{\mathbf{A}}.$ Choose $(a,b) \in \alpha \wedge (\beta \vee \gamma) - 0_{\mathbf{A}}.$ By (W) we have i < n such that $f_i(a,a,b) = g_i(a,a,b)$ and $f_i(a,b,b) \neq g_i(a,b,b).$ Using a $\beta \vee \gamma$ Maltsev chain from a to b we can find $(c,d) \in \beta$ (or in γ) such that $f_i(a,c,b) = g_i(a,c,b)$ and $f_i(a,d,b) \neq g_i(a,d,b).$ Now

$$f_i(a, d, b) \alpha f_i(a, d, a) = g_i(a, d, a) \alpha g_i(a, d, b),$$

$$f_i(a, d, b) \beta f_i(a, c, b) = g_i(a, c, b) \beta g_i(a, d, b),$$

that is $f_i(a, d, b) (\alpha \land \beta) g_i(a, d, b)$, contradicting $\alpha \land \beta = 0_{\mathbf{A}}$.

Theorem. A locally finite quasivariety \mathcal{K} has pseudo-complemented congruences iff no algebra in \mathcal{K} has a non-trivial Abelian congruence.

Proof. (\Leftarrow): Assume $\alpha \land \beta = \alpha \land \gamma = 0_{\mathbf{A}}$ but $\delta = \alpha \land (\beta \lor \gamma) > 0_{\mathbf{A}}$. Then β and γ centralize α , thus $\beta \lor \gamma$ centralizes α . Since $\delta \leq \alpha$ and $\delta \leq \beta \lor \gamma$, δ centralizes itself, i.e. δ is Abelian.

(⇒): Assume (W), and suppose that there exists a minimal Abelian congruence δ in a finite algebra $\mathbf{A} \in \mathcal{K}$. Take $(a, b) \in \delta - 0_{\mathbf{A}}$ from a $(0_{\mathbf{A}}, \delta)$ -trace N. By (W) we have i < n so that $f_i(a, a, b) = g_i(a, a, b)$ while $f_i(a, b, b) \neq g_i(a, b, b)$. Recall that $f_i(x, y, x) = g_i(x, y, x)$ holds, as well. We can map $(f_i(a, b, b), g_i(a, b, b))$ by a non-collapsing idempotent unary polynomial back to N. Then by case analysis for types 1 and 2 we get a contradiction.

PRINCIPAL CONGRUENCE DISJOINTNESS

Definition. For an algebra \mathbf{A} and integer m the *principal* congruence *m*-disjointness relation over \mathbf{A} is the 2*m*-ary relation

$$PCD_m(\bar{a};\bar{b}) \leftrightarrow \bigcap_{i < m} \theta_{\mathbf{A}}(a_i,b_i) = 0_{\mathbf{A}}.$$

Definition. Let ϕ be a positive universal sentence written as

$$\bigwedge_{i < k} (\forall x_0, \dots, x_{n_i-1}) \bigvee_{j < m_i} \sigma_{i,j}(\bar{x}) \approx \tau_{i,j}(\bar{x})$$

where $\sigma_{i,j}, \tau_{i,j}$ are n_i -ary terms. By $PCD(\phi)$ we mean the condition

$$\bigwedge_{i < k} (\forall \bar{x}) PCD_{m_i} \big(\sigma_{i,0}(\bar{x}), \dots, \sigma_{i,m_i-1}(\bar{x}); \tau_{i,0}(\bar{x}), \dots, \tau_{i,m_i-1}(\bar{x}) \big).$$

Torino, Italy

Theorem. Let \mathcal{K} be a quasivariety with pseudo-complemented congruence lattices, and ϕ be a positive universal sentence. Then $\mathcal{K} \cap SP(Mod(\phi))$ is the class of algebras $\mathbf{A} \in \mathcal{K}$ satisfying $PCD(\phi)$.

Proof. (\Rightarrow): Assume that $\mathbf{A} \leq \prod_{t \in T} \mathbf{A}_t$ with $\mathbf{A}_t \models \phi$ for all $t \in T$. For all choices of $i < k, \bar{a} \in A^{n_i}$ we need to show that

$$PCD_{m_i}(\sigma_{i,0}(\bar{x}),\ldots,\sigma_{i,m_i-1}(\bar{x});\tau_{i,0}(\bar{x}),\ldots,\tau_{i,m_i-1}(\bar{x}))).$$

This is equivalent to proving that f = g for every pair

$$(f,g) \in \bigcap_{j < m_i} \theta_{\mathbf{A}} (\sigma_{i,j}(\bar{a}), \tau_{i,j}(\bar{a})).$$

Take any $t \in T$. Since $\mathbf{A}_t \models \phi$, there is $j < n_i$ such that $\sigma_{i,j}^{\mathbf{A}}(\bar{a})$ and $\tau_{i,j}^{\mathbf{A}}(\bar{a})$ agree at coordinate t, so f(t) = g(t). This holds for all $t \in T$, therefore f = g.

Torino, Italy

Definition. For a class \mathcal{K} of algebras and an integer n we define \mathcal{K}_n to be the class of algebras having at most n elements.

Theorem. Let \mathcal{W} be a quasivariety with Willard terms, and n, m be integers. Then PCD_m is first-order definable in $\mathcal{W} \cap SP(H(\mathcal{W})_n)$ by a formula δ_m . Moreover, in all algebras of this type $PCD_m \to \delta_m$.

A version of the this theorem was discovered by K. Baker, G. McNulty and Ju. Wang for congruence meet semi-distributive varieties with bounded critical depth. **Theorem.** Let \mathbf{A} be an algebra with a pseudo-complemented congruence lattice and $\delta(\bar{x}; \bar{y})$ be a 2m-ary first-order formula for which $\mathbf{A} \models PCD_m \rightarrow \delta$. Then there exists a first-order sentence $\gamma(\delta)$ such that $\mathbf{A} \models \gamma(\delta)$ iff PCD_m is defined by δ over \mathbf{A} .

Proof. (\Leftarrow) Take $\bar{a}, \bar{b} \in A^m$. Put $\alpha_0 = \bigcap_{0 < i < m} \theta_{\mathbf{A}}(a_i, b_i)$ and let β_0 be the pseudo-complement of α_0 . Clearly,

$$\beta_0 = \{ (x, y) : \mathbf{A} \models \delta(x, a_1, \dots, a_{m-1}; y, b_1, \dots, b_{m-1}) \}.$$

Then put $\alpha_1 = \beta_0 \cap \bigcap_{1 \le i \le m} \theta_{\mathbf{A}}(a_i, b_i)$, and let β_1 be the pseudo-complement of α_1 . Now

$$\beta_1 = \{ (x, y) : \mathbf{A} \models \delta(u, x, a_2, \dots; v, y, b_2, \dots) \text{ for all } (u, v) \in \beta_0 \}.$$

Recursively, we have first-order definable congruences β_0, \ldots, β_m such that $\bigcap_{i < m} \beta_i = 0_{\mathbf{A}}$. We define $\gamma(\delta)$ to be the sentence that says "the relations β_i are congruences and $\bigcap_{i < m} \beta_i = 0_{\mathbf{A}}$."

PRINCIPAL CONGRUENCE DISJOINTNESS SUMMARY **Definition.** For an algebra \mathbf{A} and integer m the *principal* congruence *m*-disjointness relation over \mathbf{A} is the 2*m*-ary relation

$$PCD_m(\bar{a};\bar{b}) \leftrightarrow \bigcap_{i < m} \theta_{\mathbf{A}}(a_i,b_i) = 0_{\mathbf{A}}.$$

Theorem. Let \mathcal{K} be a quasivariety with pseudo-complemented congruence lattices, and ϕ be a positive universal sentence. Then $\mathcal{K} \cap SP(\operatorname{Mod}(\phi))$ is the class of algebras $\mathbf{A} \in \mathcal{K}$ that satisfy $PCD(\phi)$. **Theorem.** Let \mathcal{W} be a quasivariety with Willard terms, and n, m be integers. Then PCD_m is first-order definable in $\mathcal{W} \cap SP(H(\mathcal{W})_n)$ by a formula δ_m . Moreover, in all algebras of this type $PCD_m \to \delta_m$. **Theorem.** Let \mathbf{A} be an algebra with a pseudo-complemented congruence lattice and $\delta(\bar{x}; \bar{y})$ be a 2m-ary first-order formula for which $\mathbf{A} \models PCD_m \to \delta$. Then there exists a first-order sentence $\gamma(\delta)$ such that $\mathbf{A} \models \gamma(\delta)$ iff PCD_m is defined by δ over \mathbf{A} .

FINITE BASIS THEOREMS FOR QUASIVARIETIES

Theorem. Let \mathcal{W} be a quasivariety with pseudo-complemented congruence lattices, n be a positive integer, and ϕ be a positive universal sentence. Then $\mathcal{L} = \mathcal{W} \cap SP(H(\mathcal{W})_n) \cap SP(Mod(\phi))$ is finitely axiomatizable relative to \mathcal{W} .

Proof. By δ_m we mean the first-order sentence axiomatizing PCD_m in $\mathcal{W} \cap SP(H(\mathcal{W})_n)$. By $\delta(\phi)$ we mean the sentence obtained from $PCD(\phi)$ by replacing each occurrence of PCD_m with δ_m . Put $\beta_n = (\forall x_0, \ldots, x_n) \bigvee_{i < j < n} x_i \approx x_j$. We claim that \mathcal{L} is finitely axiomatized relative to \mathcal{W} by $\gamma(\delta_{n(n+1)/2}) \wedge \delta(\beta_n) \wedge \delta(\phi)$.

Corollary. Every quasivariety having pseudo-complemented congruence lattices and contained in a finitely generated quasivariety, is contained in a finitely axiomatizable, locally finite quasivariety.

Corollary. Let \mathcal{K} be a finite set of finite algebras such that $SP(\mathcal{K})$ has pseudo-complemented congruence lattices. If $HS(\mathcal{K}) \subseteq SP(\mathcal{K})$ then $SP(\mathcal{K})$ is finitely axiomatizable.

Proof. We can assume that $\mathcal{K} = HS(\mathcal{K})$ and each member of \mathcal{K} has size at most n. Now we can axiomatize \mathcal{K} by a positive universal sentence ϕ . Since \mathcal{K} has Willard terms, there exists a finitely axiomatizable quasivariety \mathcal{W} with Willard terms containing \mathcal{K} . Then $SP(\mathcal{K}) = \mathcal{W} \cap SP(H(\mathcal{W})_n) \cap SP(Mod(\phi))$ and it is finitely axiomatizable.

Corollary (R. Willard). Every congruence meet semi-distributive variety with finite residual bound is finitely axiomatizable.

Definition. A quasivariety \mathcal{K} has the *weak extension property* if for all $\mathbf{A} \in \mathcal{K}$ and for all $\alpha, \beta \in \text{Con } \mathbf{A}$

$$\alpha \wedge \beta = 0 \to \alpha' \wedge \beta' = 0.$$

where ' is the extension map defined as $\alpha' = \bigcap \{\gamma \in \operatorname{Con}_{\mathcal{K}} \mathbf{A} : \alpha \leq \gamma \}$. **Theorem.** Let \mathcal{W} be a quasivariety with pseudo-complemented congruence lattices, n be a positive integer, and ϕ be a universal sentence. Then $\mathcal{L} = \mathcal{W} \cap SP(H(\mathcal{W})_n) \cap SP(\operatorname{Mod}(\phi))$ is finitely axiomatizable relative to \mathcal{W} , provided there exists some quasivariety \mathcal{E} with the weak extension property such that $\mathcal{L} \subseteq \mathcal{E} \subseteq SP(\operatorname{Mod}(\phi))$. **Corollary.** Every finitely generated quasivariety with pseudocomplemented congruence lattices and the weak extension principle is finitely axiomatizable.

Corollary (D. Pigozzi). Every finitely generated relatively congruence distributive quasivariety is finitely axiomatizable.